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A numerical model has been developed to study the confinement of low-pressure 
plasmas in simple axially symmetric configurations. The equations contain the effects 
of resistivity, plasma inertia, and pressure gradients along the field. The model is applied 
to a simple magnetic geometry that includes the effects of curvature, rotational trans- 
form, and shear. An explicit difference scheme is derived for the numerical solution 
with this prescribed geometry. Results of calculations with the model are compared to a 
similarity solution for resistive diffusion in a cylinder, and to calculations of qua- 
sistationary diffusion in a torus. Finally, the onset of plasma rotation is demonstrated 
and its development to a steady-state rotation is observed. 

1. INTRODUCTION 

The determination of the properties of a plasma confined in a toroidal magnetic 
field is complicated by the nonlinear behavior of the governing equations, by the 
number and complexity of the physical phenomena involved, and by the geometry. 
Thus, most analytic treatments have many weakening assumptions and approxi- 
mations and leave much to be desired. Here we describe a computer program 
for studying such confinement that utilizes a fluid description and should fill in 
some of the gaps. It contains many of the features of a real plasma and, at the 
same time, is sufficiently simple to obtain results without excessive use of machine 
time. 

The simplest plasma model begins with the ideal hydromagnetic equations and 
the assumption that the configuration is static-there is no mass flow. Kruskal 
and Kulsrud [l] found a variational principle and proposed a thought experiment 
to demonstrate the existence of equilibrium solutions for configurations where 
the magnetic field lines form nested toroidal surfaces. They identified the constraints 
that must be specified to characterize the system. One must prescribe the shape 
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of some bounding magnetic surface (or, equivalently, the currents in external 
conductors), the pressure on each magnetic surface, and the rotational transform 
(or, equivalently, the net current) on each surface. Explicit evaluation of such 
configurations has been done, both for axially symmetric systems [2] and for 
stellarators using expansion techniques [3,4]. Analytical efforts to obtain equilib- 
rium solutions for a more realistic model [5-71 have indicated the way in which 
nonideal terms restrict the class of acceptable solutions, but have not shed much 
light on the nature of steady-state configurations. Recent work has shown that 
the static case is unstable [8], and that a rotating equilibrium is established in the 
presence of additional dissipation processes such as viscosity [9]. 

A numerical approach, alternative to the one presented here, is to follow the 
behavior of a collection of guiding-center particles in a prescribed magnetic 
field [lo-121. These calculations employ Poisson’s equation to determine the 
electric field from the difference between the electron and ion charge densities. 
For such calculations the mesh spacing must be comparable to the Debye length, 
which is many orders of magnitude smaller than the dimensions of a reasonable 
plasma containment device. Thus a very large number of grid points is required. 
Furthermore, the time step in such a calculation must be shorter than the plasma 
period and thus is many orders of magnitude smaller than the characteristic 
times of acoustic motion, hydromagnetic instabilities, and resistive diffusion-the 
phenomena of interest in containment studies. These requirements make realistic 
simulations using particle models prohibitively expensive in computer time. 

For these reasons we have developed a simulation model utilizing fairly simple 
fluid equations. The major motivation has been to understand toroidal configura- 
tions where mass flow and other nonideal effects are important. Therefore, we 
have incorporated plasma inertia, pressure gradients along the magnetic field, 
and electrical resistivity into the initial model. We have restricted consideration 
to static magnetic fields, an assumption that greatly simplifies the problem and 
is realistic for the low-pressure devices currently being studied, in which field 
annihilation [13] is not important. We follow the development of the system in 
real time. This fluid model is described in the next section and a finite-difference 
approximation to it is developed in Section 3. The numerical stability criteria for 
these explicit difference equations are described in Appendix II. 

The major results obtained to date are as follows: 
While developing the program we found electrostatic oscillations, with a period 

equal to that required for a sound wave to propagate around the torus divided 
by (1 + L~/~T?)~~~, reminiscent of the Pfirsch-Schltiter factor [14]. This was first 
thought to be a numerical instability. However, analysis of the equations for small 
z-independent perturbations about a static solution leads to a dispersion relation 
that is in good agreement with the numerical observations. This work is reported 
elsewhere [ 151. 
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If the configuration is nearly static, the usual predictions [16] of classical 
diffusion can be recovered. For large resistivity, however, plasma inertia associated 
primarily with flow along the magnetic field lines must be balanced by pressure 
gradients in the magnetic surfaces. The modification of diffusion due to this effect 
is discussed in Section 4. 

If the plasma is given a small initial rotation velocity, this flow increases 
exponentially in agreement with recent theoretical predictions [8, 17, 181. The 
numerical results are described in Section 5. 

2. MODEL 

We use the scalar-pressure fluid model [I91 described by the following equations 
(in Gaussian units): 

p ( -&+Y+)=~J XB-VV(~,+~~), (1) 

E+;vxB=qJ, (2) 

3 + v * pv = 0, 

piyJg=- ; P& , 

1 aB -- = 
c at -V x E, 

$J=VXB, (6) 

V.B=O. (7) 

Here we have assumed that the ions and electrons have the same constant tem- 
perature. Current interest in low-pressure systems motivates separation of magnetic 
field into two parts: B = Bexternal + BBlasma , with Bexternal a prescribed static 
field and Bplasma sufficiently small that it can be neglected. Thus the field is 
magnetostatic: aB/at = 0; consequently, Eq. (5) reduces to the electrostatic 
condition 

E = -V$, (8) 

and Eq. (6) is replaced by the charge neutrality condition 

V*J=O. (9) 
The terms on the right side of Eq. (1) must be nearly equal; otherwise balance 
would be restored by a rapid relaxation with characteristic time ~c2/v&~~ , as 
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can be seen for the case of cylindrical geometry. Therefore, straightforward inte- 
gration of these equations fails unless very short time steps and a high-order 
difference scheme are used. A method of solution other than direct time integration 
is needed. 

Knorr [5] studied the equilibrium problem for systems of this type; Karlson [6] 
and Viswanathan [7] corrected and extended his results. Following the lines of their 
analytic methods, we have developed a prescription for calculating the plasma 
motion. The procedure, illustrated in Fig. 1, is the following: 

1 1 
{B-.(Ohm’s Low) -J;, 

I 

1 j ~iChatqeConservatlonl~d~/dl ] 

& 
I 

k. (Ohm’s Law1 -4-F 

I 

i . 
k (Momentum1 -+dV,,/dl B_xiOhm’s LawI-_VI 

1 
I 

(Mass Conservotlonl +dp/dl 
I 

FIG. 1. Computational procedure. 

Use the component of Eq. (1) parallel to B to advance v,, in time, and the other 
two components to compute J, at each time step. In the numerical program this 
introduces a small error, in that the current value of &,/at is not known and must 
be approximated by its value as derived in the previous time step. This is justified 
both physically and numerically. In the low-pressure limit, only E x B drifts and 
resistive diffusion serve to transport mass across the magnetic field; perpendicular 
inertia would be important only if it could couple with magnetic field motion to 
produce AlfvCn waves. The error introduced by this approximation is smaller in 

magnitude than the truncation error in the Vp term. The numerical aspects of 
this approximation are discussed near the end of Appendix I. 

Rewrite Eq. (9), 
B-v(J*B/B2) = -V. J,, 

and integrate along a magnetic field line to obtain J,, , up to an arbitrary surface 
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function (i.e., a function which is constant on each magnetic surface). Similarly, 
integrate the parallel component of Eq. (2), 

B-V+= -qJ.B, (11) 

to determine $ to within a surface function. Use the other two components of 
Eq. (2) to determine v, , and then use Eq. (3) to advance p in time, 

The solvability condition [I] for Eq. (1 l), 

I J * B dS/j VY 1 = 0 (12) 

(where dS is the element of surface area and Y is a surface label), determines the 
constant of integration (surface function) for Eq. (10). Similarly, substitution 
of Eq. (1) for J, and then Eq. (2) for v, into the solvability condition for Eq. (10) 
yields a partial differential equation (in Y and t) to advance the surface function 
4 of Eq. (11) in time. After integration with respect to Y and application of the 
divergence theorem, this condition (no charge accumulation on a magnetic surface) 
can be written 

I J.VYdS/(VY/ =O. (13) 

This completes the system of equations for advancing the plasma in time. 
Initial and boundary conditions must also be specified; they depend on the 

difference scheme as well as the mathematical form of the equations. The quantities 
that are integrated forward in time are the parallel velocity u,, , the density p, 
and the radial gradient of the average electrostatic potential dr#dr. These are the 
basic variables of the problem, and clearly must be assigned initial values. 

In the solution scheme outlined here, the partial time derivative of the perpen- 
dicular velocity is small. Equations (l), (2), (lo), and (13) determine the perpen- 
dicular velocity in terms of the basic variables, through equations that do not 
involve time derivatives if &,/at is neglected. In the program we iterate these 
equations to obtain initial values of the velocity that are consistent with the basic 
variables. This is most easily accomplished if the initial velocities are small. 
A natural choice of preinitialization variables is therefore p = p(r), ZI,, = 0, 
a$/ar = 0. 

Boundary conditions are also required at the wall for all time. For calculations 
with this model, it is satisfactory to take the density at the wall constant and small 
compared to interior values. Then D,, and @/lar can be computed at the wall in 
the same way that they are computed on the remainder of the mesh. Tests have 
shown that the results of calculations are insensitive to changes in density at the 
wall, provided the density remains small. 
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For some extensions of the model, e.g., including the Hall-effect terms in Ohm’s 
law, the results are sensitive to the boundary conditions. Such difficulties can be 
circumvented by inserting a region of constant low density and vanishing velocity 
between the boundary and the active plasma region. Radial transport in this 
region is slow compared to resistive diffusion times in the body of the plasma, so 
the insulation associated with this outer region will persist during the course of a 
run. 

We are using the idealized magnetic field model described by Knorr [5]. Our 
coordinate system (r, 8, z) has a metric given by 

ds2 = dr2 + r2 de2 + [l - (r/R) cos ~91~ dz2, (14) 

and is shown in Fig. 2. It reduces to a cylindrical coordinate system (along the 
minor axis of the torus) when the major radius R is made infinite. The magnetic 
field is 

B = Bo[eof(r) + 4/V - (r/R) ~0s 4. (15) 

FIG. 2. The toroidal coordinate system. 

It satisfies Eq. (7) and corresponds to a toroidal field plus a field due to a purely 
axial current 

J =-!LeB la rf(r> 
0 4?? ’ ’ r ar 1 - (r/R) cos 0 . (16) 

With this field the magnetic surfaces are concentric tori. The function f(r) is 
related to the rotational transform by 

f(r) = n(r)/27r(R2 - r2)lj2. (17) 
We think of this transform as really being imposed by external helical windings 
in a stellarator, or by internal currents not carried by the plasma (such as those 
of a hard core in a levitron). For a stellarator, the current of Eq. (16) is fictitious 
but this model reproduces many of the features of the actual system. 

5w/3-7 
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This choice for the magnetic field permits some important simplifications in 
the numerical model. For example, in the (I, 8, z) coordinate system, the accelera- 
tion terms are 

where 
v - Vv = e,v * Vv, + egv . Vu8 + e,v * Vv, + Q x v, (18) 

D=:e,+ v,(e, sin ~9 + e, cos 0) 
R - r cos 8 * (19) 

Here SL has a simple physical interpretation: It represents the coordinate rotation, 
per unit time, following a fluid element. To see this, consider an infinitesimal 
displacement r d0 = vg dt in the e, direction. Then the coordinate system rotates 
through an angle dn = vs/r about the axis e, . The relatively simple form of 
Eq. (19) is due to our particular choice of the coordinate system. 

Since the coordinate surfaces and magnetic surfaces coincide, the magnetic line 
integrals for J,, and 4 and the solvability conditions, Eqs. (12) and (13), take 
simple forms in the difference equations. It is necessary to satisfy these integrals 
accurately, since their solutions, J,, and $, play a dominant role in determining 
the dynamics of the motion. 

3. DIFFERENCE EQUATIONS 

The continuous fluid is approximated by equal-area cells on a cylindrical mesh, 
with density and velocity calculated on alternate points [20]. The boundaries of 
these cells are equally spaced rays of constant 8, and circles equally spaced in r2. 
The components of velocity are displaced one half step in their respective direc- 
tions, relative to the density. In addition, the velocities are displaced one half step 
in time. This allows proper centering of the differences. 

The continuity equation is evaluated using centered differences in space and 
time [21]; it is used to advance the density in time. In terms of the divergence 
operator, 

where 8r measures the radial spacing of the mesh and 

(20) 

N = 1 - f cos 8. (21) 
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The partial time derivative of the density is obtained from 

( ) 
6p t+1/2 
St r.6 = -(V * p&y2. 

The quantity pr is used to center the right side in time and is calculated similarly. 
Thus, density is advanced in time by 

6p t+w 
Pits’ = p:., + 6t - ( 1 at r,e 

and 

@r)T2 = 6p t+1/2 
PZ + ; 6t (T) . 

To3 
(24) 

Space centering of Eq. (22) is accomplished by spatial averaging of pr from adjacent 
mesh points. 

The parallel component of the momentum equation is a convective differential 
equation for the parallel velocity, 

+ v - Vu,, + e,, *sZxv =-e, 
) 

2kT 
*+lp. (25) 

This is integrated by the method of Courant, Isaacson, and Rees [22]. First we 
obtain the dimensionless vector 

St St 
U = 5 44 + r veee . (26) 

Then the backward space difference along u is used to advance vr . This can be 
written 

- St [+ Vlnp+SL xv]*e,, 

where ST = sgn(u,) and S, = sgn(uO). 
In our geometry, Eq. (13) becomes 

f 
B 
B2 ’ [ 

d8 e, * - +b7p+p(~+v.vv)]B=o. 

(27) 

c3 

This equation implicitly determines the surface function $ (constant of integration) 
in the electrostatic potential. It can be rewritten as a convective partial differential 
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equation that explicitly advances C$ in time; this is done in Appendix II. We 
approximated dv,/dt by its value from the previous time when advancing oli ; we 
use the same approximation here. Thus Eq. (28) is rewritten 

where I$ is the surface function in the potential. Since $ is independent of 0, the 
quantity (a2&‘lar at)t can be taken outside the integration, and Eq. (29) explicitly 
determines it. The time integral of this quantity then determines E, and 4. The 
magnitude of the error introduced by the approximate treatment of dv,/dt is small. 
However this approximation dictates the precise form of Eq. (29) because of 
numerical stability considerations. 

The remaining calculations, J, vL , and the part of 4 that varies on a surface, 
do not involve time integrals; they are explicit, and are easily centered in space 
and time. To achieve this centering, we let J, occupy the same mesh points as 
v0 , let Jo and J, occupy the v, mesh points, and let q% - $ be displaced one half 
mesh spacing relative to p in r, 8, and t. 

Two transport processes are present in this model: resistive diffusion and 
acoustic motion. Since the numerical difference techniques described above are 
explicit, each transport process introduces a numerical stability criterion. For all 
cases of physical interest, the stability requirement for sound is the more stringent 
one. (The calculation of this criterion is given in Appendix I.) It limits the step 
size to a few microseconds for typical stellarator parameters. 

4. DIFFUSION 

One obvious application of this simulation model is to investigate the effects 
of plasma inertia on classical diffusion in a torus. 

If the inertial terms in Eq. (1) are negligibly small, plasma diffuses through a 
magnetic surface in this configuration at the rate [ 1, 161 

/ vD dS = qc2 1 w (1 + $$j 6 

= (27~)~ Tc2p’(r) rR(l + 3r2/2R2) 
Bo2[1 + r2L2/(2r)2 (R2 - r”)] 

. 1 + (2~r)~ (R2 - r2) 
1 r2L2 

1 _ (1 - r2/R2) 
(1 + 3r2/2R2) 11 

~ (27r)2 vc2p’(r) rR[l + 8a2/b2] 
Bo2[l + r2b2/(2nR)2] ’ 

-+ 1. (30) 
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Insertion of this into Eq. (3) determines the rate of decay of density on a magnetic 
surface, 

aP-1 a 
at 

-r-r1 +F]& 
- F ar (31) 

A similarity solution [23] can be found by assuming that p = p&V(r) W(t). Then 

p = pJ(r)l[l + (2@Wm) W, (32) 

with X(r) and A determined from 

1 d r(1 + 8n2/h2) p0 dX -- 
r dr B2 dr= 

AX. (33) 

The characteristic value h is fixed by the boundary conditions X = 1 and dX/dr = 0 
at r = 0, and X = 0 at the boundary. For a straight system J,, can 
the Pfirsch-Schliiter factor (1 + 8r2/12) can be set equal to one. 

be zero and 

08- 

o0.6- 
E 
= 0!4- 

FIG. 3. Similarity solutions for diffusion in a torus. The lower dashed curve denotes the 
average radial density distribution due to the classical PfirschSchliiter flux in a magnetic geometry 
with a uniform rotational transform (an I = 2 stellarator). The solid curves are the results of 
numerical simulation for one, two, and three times the classical value of resistivity. Enhancing 
the resistivity increases surface flow velocities and radial flux, causing the profile to lie lower. 
The upper dashed curve represents the classical distribution for a parabolic transform (an I = 3 
stellarator). The results of numerical simulation for the same resistivities are indistinguishable 
from the classical result on this scale. 

The lower dotted curve in Fig. 3 shows the solution X(r) for a straight configura- 
tion with n, = lOr3 cm-3 hydrogen at 100 eV, B, = lo4 G, and f = Be/BZ = O.l(r/u). 
This choice off corresponds to a uniform rotational transform (an 6’ = 2 stella- 
rator). The curve for a parabolic rotational transform [f = 0.1(r/u)3, corresponding 
to an 8 = 3 stellarator] is the same. The effect of curvature on the solution of 
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Eq. (31) is not particularly striking if the rotational transform is constant. For an 
aspect ratio R/a of 10, the curve again lies on the cylinder curve. The Pfirsch- 
Schliiter factor introduces a significant modification for an J = 3 stellarator: As 
shown by the other dotted curve, the pressure gradient must vanish in the region 
where the transform is small. 

To see the effects of inertia we numerically adjusted the distributions to obtain 
self-consistent similarity solutions with zero average flow on a surface. 

In the absence of toroidal curvature we were able to use extremely large values 
of resistivity to speed the calculation, and found that with any static initial density 
distribution the system quickly adjusted to that satisfying Eq. (33) and then pro- 
ceeded to decay in agreement with Eq. (32). 

In toroidal systems we found it necessary to modify the model to “short-circuit” 
the radial electric field, thus inhibiting rotation. The resulting radial profiles of 
average density are presented in Fig. 3. As previously mentioned, the dotted 
curves represent the average density on the magnetic surfaces for systems with a 
constant rotational transform and with a parabolic transform, for the case of very 
small resistivity. The solid lines correspond to one, two, and three times the 
classical resistivity [24]. For these cases the plasma loss is enchanced over that 
predicted by quasistatic theory because the density is no longer constant on a 
magnetic surface; it is higher on the outside of the torus and lower on the inside. 
The electrostatic field associated with ~5,, tends to move the plasma toward the 
outside, so the loss is increased. 

The diffusion rate, defined as the mass flow through a magnetic surface divided 

FIG. 4. Mass flux for similarity solutions. The indicated values of 7 correspond to zero, one, 
two, and three times the classical resistivity. 
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by the mass inside this surface, is a constant (independent of radius) for a similarity 
solution. This quantity, divided by its quasistatic value, is plotted as a function 
of resistivity in Fig. 4. The departure from the quasistatic value is due to the 
increase in pressure on the outside of the torus, which balances the inertial accelera- 
tion associated with surface flow. 

5. PLASMA ROTATION 

Recent studies [8,9, 17, 181, based on a variety of models, have indicated that 
a plasma confined in a toroidal configuration tends to rotate. These analyses 
demonstrate that in the presence of resistivity a static configuration is not stable. 
Although some work [9] has shown that viscosity is important in the determination 
of a steady-state configuration, it is obviously of interest to study this behavior 
on the simplest possible model. Therefore, we used our numerical simulation 
model to follow the long-time behavior of an initially static configuration. 

In a typical calculation we assumed that T, = Ti = 25 eV, B = lo4 G, 
R = 100 cm, u = 5 cm, 7 = qspitzer [25], and we use a smooth density profile in 
the starting conditions. 

In Fig. 5 we display the time evolution of the rotation velocity ug normalized 

TIME (x10%) 

FIG. 5. Development of plasma rotation. The lower curve denotes the average poloidal 
rotation velocity, divided by the ion sound speed, as a function of time. The upper curve represents 
vs/uth at the inside (0 = 0) of the torus. The broken line is the projection of the thermal velocity 
along B upon the poloidal basis vector. The starting conditions correspond to a nearly static 
equilibrium. 



442 WINSOR, JOHNSON, AND DAWSON 

to the thermal velocity. The two curves correspond to the velocity averaged over 
the magnetic surface, and to the velocity at 0 = 0 (on the inside of the torus). 
Results are presented for a surface at 4 cm radius, where the initial density gradient 
is a maximum. Behavior on the neighboring surfaces is similar. At late times the 
net outward flow is roughly 1.3 times that predicted by the Pfirsch-Schhiter 
formula. 

The major features of these curves are the exponential growth of the rotation 
velocity and the saturation at a value somewhat below the dotted line corre- 
sponding to vg = fvta = (go/B,) 0th . Superimposed on this is an acoustic wave 
with a period identified with the geodesic mode. This oscillation can be reduced 
or eliminated by carefully choosing the initial conditions. We do this to avoid 

I I I 
-P -TV2 

e” 
712 u 

FIG. 6. Surface density variations with rotation. The curves represent the variation of mass 
density with azimuth at 0, 250, 500, 750, and 1000 microseconds into the calculation of Fig. 5. 
At 0 = V, the density monotonically increases with time due to resistive diffusion. The dots 
correspond to the mesh points in the finite-difference grid. 

overwhelming the slower diffusion and rotation processes with large-amplitude 
acoustic oscillations. The numerical and physical damping of these modes is very 
small, so that “transient modes” excited by the initial conditions have a damping 
time which is long compared to the development time of the features of physical 
interest. 

Viewed as a density perturbation, the initial transient is very small, roughly 
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1O-3 times the average density. Figure 6 presents the time development of the 
density distribution on this magnetic surface. It shows a pronounced outward 
shift (toward l3 = 7~) of the density. Superimposed on this shift is an increase 
with time of the total mass on the surface, due to resistive diffusion into it. 

On the basis of analytic studies utilizing the ideal model with a large aspect 
ratio expansion, the character of fluid flow should change when the average 
rotation reaches u0 =fith ; we should expect z’~ to approach this value. Since 
collisional viscosity should modify this singular behavior, which is displayed by 
the analysis [l I], we first thought that the numerical viscosity associated with the 
grid was responsible for the magnitude of this difference, f&h - Q . Work with 
finer meshes suggested that this is not the case. 

The plasma flow on a magnetic surface is closely analogous to the problem of 
flow through a nozzle [26], the (1 - r cos 0/R) metric coefficient playing a role 
similar to the cross-sectional area in the classical hydrodynamic problem. Thus 
we should expect a sonic point to occur at fl = 0. Hazeltine, Lee, and 
Rosenbluth [17] have carried through an analysis verifying this. The curve for 
~(0 = 0) agrees with such a model. 

Clearly, further work in this direction would be useful. An asymptotic analysis 
of this behavior, using the inverse aspect ratio as an expansion parameter, has 
been performed and will be reported shortly [18]. An analysis of diffusion in 
these steady-state systems with flow, similar to the one reported in Section 3 for 
static systems, should be developed. 

For our model, the time evolution of v0 has mirror symmetry about vg = 0; 
the plasma can spin in either direction, saturating at 1 v0 1 ~fvth . However, 
recent calculations [27] which include the inhibition of plasma and current flow 
parallel to B caused by viscosity in the presence of magnetic field corrugations, 
remove the degeneracy in the direction of rotation. We find that the plasma 
becomes positively charged in the center, and takes on the corresponding E x B 
rotation. 

APPENDIX I 

Here we examine the numerical stability of the finite differencing scheme for 
small-amplitude perturbations. We follow the method of Richtmyer and Morton 
[21]; for simplicity we neglect the effect of resistivity. We treat two limiting cases; 
in each case one mode of oscillation is dominant. 

First we consider the case of small rotational transform. Then the parallel 
acoustic period is long and the geodesic mode dominates. Small perturbations p”, 
5 satisfy the continuity equation, 

ap 
Jj = -Po v -G, (1.1) 
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and 

j” (2kT Vp + mp, $1 . e,N2 do = 0, W) 

which results from substituting Eq. (1) into Eq. (13). If we express the radial 
velocity in terms of the average potential, then to lowest order in r/R the difference 
form of these equations is 

and 

Pi+’ (1.3) 

($y+l/2 - (4’)~~l/2 = $ g oE pot sin 0. 
1 

(1.4) 

Clearly this couples the average potential to the sin 8 component of p”. If we 
assume a harmonic time dependence edimt, the frequency of a perturbation is 
given by 

cos w at = 1 - $g (W2, (I.9 

and w is real provided 
6t < R(2mlkT)112. (1.6) 

Now consider the case of very small curvature. The geodesic period becomes 
long, and the parallel mode dominates. It is characterized by the continuity 
equation and the parallel component of the force equation. Their difference 
formulations are 

- ; (1 + f”)4” [jgy - p;y7 (1.7) 

and 

Here u = ue at/r 68 > 0. If u were less than zero, the space difference on B,, would 
be between 6’ + 3/2 and 8 + l/2. We write Eq. (1.7) at two successive time steps 



TOROIDAL PLASMA CONTAINMENT 445 

and subtract, and then eliminate d,, through Eq. (1.8). Assuming a dependence 
of the form p”(0, t) = TW, and writing 7 = Tat and f = 6Pe, we obtain 

73 - [2 - ay2 - f - E-l) - f (35 + 4 - f-l)] v2 

+ [l - u(l + &I 7 + ; (5 + PI = 09 (1.9) 

where 

St “fhh 
a = se r(1 + f2)1/2 * 

This is of third order in 7 because of the backward difference required to compute 
p” at the half-time. For a2 < 1 and u < 1, one root of Eq. (1.9) is small, 
77 N ~(6 + e-3/4. This root can be factored out of Eq. (1.9), and the other two 
roots, to first order in 0~~ and u, are 

?j = 1 - w f [w” - cL2(2 - f - f-1)11/2, (I. 10) 

where 

w = ; (2 - < - 6-l) + ; (2 + I$ - 5-l). 

The root that is larger in magnitude satisfies / 77 I2 = 1 - ~(2 + t + f-l)/2 to 
lowest order in w, so 1 7 1 < 1 unless u = 0. Thus the numerical scheme is stable, 
provided 01~ < 1, u < 1. Numerical studies of the cubic equation for finite values 
of 01 and u indicate that the scheme is stable for a < l/4, u < 0.75. In terms of 
the physical parameters, this limits the time step to 

or 

St < $[l + 4rr2(R2 - r2)/r2~2]1/2 r Stl/vth (I.1 1) 

whichever is smaller. 

St < $r 6%/v, , (1.12) 

The finite difference scheme reduces to either Eqs. (1.3) and (1.4) or Eqs. (1.7) 
and (I@, in the two respective limits. We therefore choose our time step to satisfy 
the most restrictive criterion of Eqs. (1.6), (I.1 l), or (1.12). For the parameters 
discussed in Section 5, the most restrictive is Eq. (I.1 1) evaluated on the surface 
nearest the magnetic axis. It limits St to a few microseconds. The calculations 
reported in that section were performed with a time step of 1~ sec. 

In the calculations of this paper, the time step has been adjusted to satisfy 
Eq. (1.11) on the inner surface. Since the density gradients are small the flow 
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remains slow in this region and has little effect on the overall behavior of the 
plasma. The small time step insures that the numerical calculations are accurate 
in the outer region. In particular, the av,/Zt term in Eq. (1) is replaced by its 
value from the previous time step, as discussed above Eq. (10). This introduces 
an error, of order pwI 6t times the root-mean-square time average of &,/at, into 
the left side of Eq. (1). (Here wI , the geodesic acoustic frequency, corresponds 
to the shortest characteristic time in the model.) For our parameters this error is 
a factor of IO* smaller than the truncation error in the centered-difference approxi- 
mation to Op. For the parameters used in Section 5, but modified to approximate 
the first limiting case of this appendix, the geodesic mode amplitude is constant 
to within five parts in lo5 per period (one part in lo3 for the duration of the calcula- 
tion in Fig: 5). For similar parameters, the lowest parallel acoustic mode decays 
by five parts in lo* per period (one part in lo2 for the calculation of Fig. 5). 

The preceding analysis describes the linear behavior of the model. For a more 
complete understanding of the model, it is necessary to examine its nonlinear 
behavior. This was obtained from many numerical experiments with the normal 
modes excited by the initial conditions (both intentionally and unintentionally). 
When flow and diffusion are important, the results are in qualitative agreement 
with what one expects from mode coupling and resistive diffusion. 

APPENDIX II 

Equation (13) can be converted into a partial differential equation that advances 
the average potential in time by writing v in such a way as to explicitly exhibit its 
dependence on $. Thus 

v=c;xpP+3, 

where 8’ = ~c$(!P)/~P. Straightforward vector manipulation converts Eq. (13) 
to the form 

B x v!P 
+ BIVY’I . [ 
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Since 4’ depends only on Y it can be removed from the surface integrals, so that 

a$ a$ 
Ypjj- + s * + yw + %J’ + E = 0, (11.3) 

with 

:il $Plvy’l, 

t 9 e, . (VC) . es\/f $-p I VY 1, 

and 

1 dS E- --es’ 
f c B [ 

+c .W)]/f$p IVYI. 

Here e, = B x VY/B / VY I is a unit vector tangent to the magnetic surface, 
perpendicular to B. 
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